Email updates

Keep up to date with the latest news and content from Trials and BioMed Central.

Open Access Highly Accessed Methodology

Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design

Laura Richert12345, Adélaïde Doussau14, Jean-Daniel Lelièvre3678, Vincent Arnold123, Véronique Rieux9, Amel Bouakane9, Yves Lévy3678, Geneviève Chêne1234, Rodolphe Thiébaut1102345* and for the Vaccine Research Institute (VRI)

Author Affiliations

1 Université Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, F-33000, France

2 INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, F-33000, France

3 Vaccine Research Institute (VRI), Créteil, F-94010, France

4 CHU de Bordeaux, Pole de sante publique, Bordeaux, F-33000, France

5 INRIA SISTM, Talence, F-33405, France

6 INSERM U955, Créteil, F-94010, France

7 Université Paris Est Créteil, Faculté de Médecine, Créteil, F-94010, France

8 Groupe Henri-Mondor Albert-Chenevier, Immunologie clinique, Créteil, F-94010, France

9 French National Agency for Research on AIDS and Viral Hepatitis (Inserm-ANRS), Paris, F-95013, France

10 Centre INSERM U897, Université Bordeaux, 146, rue Léo Saignat – case 11, Bordeaux cedex, F-33076, France

For all author emails, please log on.

Trials 2014, 15:68  doi:10.1186/1745-6215-15-68

Published: 26 February 2014

Abstract

Background

Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic.

Methods

We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial.

Results

We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative.

Conclusions

By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.

Keywords:
Clinical trial; Design; Phase I; Phase II; Randomisation; Frequentist; Bayes; Stopping rule; Safety; HIV vaccine